

    
      
          
            
  
JumpDiff




jumpdiff is a python library with non-parametric Nadaraya—Watson estimators to extract the parameters of jump-diffusion processes.
With jumpdiff one can extract the parameters of a jump-diffusion process from one-dimensional timeseries, employing both a kernel-density estimation method combined with a set on second-order corrections for a precise retrieval of the parameters for short timeseries.



Installation

To install jumpdiff simply use

pip install jumpdiff





Then on your favourite editor just use

import jumpdiff as jd





The library depends on numpy, scipy, and sympy.



Jump-diffusion processes

We will show here how to: (1) generate trajectories of jump-diffusion processes; (2) retrieve the parameters from a single trajectory of a jump-diffusion process.
Naturally, if we already had some data – maybe from a real-world recording of a stochastic process – we would simply look at estimating the parameters for this process.


The theory

Jump-diffusion processes1, as the name suggest, are a mixed type of stochastic processes with a diffusive and a jump term.
One form of these processes which is mathematically traceable is given by the Stochastic Differential Equation [https://en.wikipedia.org/wiki/Stochastic_differential_equation]


\[\mathrm{d} X(t) = a(x,t)\;\mathrm{d} t + b(x,t)\;\mathrm{d} W(t) + \xi\;\mathrm{d} J(t),\]

which has four main elements: a drift term \(a(x,t)\), a diffusion term \(b(x,t)\), linked with a Wiener process \(W(t)\), a jump amplitude term \(\xi(x,t)\), which is given by a Gaussian distribution \(\mathcal{N}(0,\sigma_\xi^2)\) coupled with a jump rate \(\lambda\), which is the rate of the Poissonian jumps \(J(t)\).
You can find a good review on this topic in Ref. 2.



Integrating a jump-diffusion process

Let us use the functions in jumpdiff to generate a jump-difussion process, and subsequently retrieve the parameters. This is a good way to understand the usage of the integrator and the non-parametric retrieval of the parameters.

First we need to load our library. We will call it jd

	1

	import jumpdiff as jd







Let us thus define a jump-diffusion process and use jd_process to integrate it. Do notice here that we need the drift \(a(x,t)\) and diffusion \(b(x,t)\) as functions.
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	# integration time and time sampling
t_final = 10000
delta_t = 0.001

# A drift function
def a(x):
    return -0.5*x

# and a (constant) diffusion term
def b(x):
    return 0.75

# Now define a jump amplitude and rate
xi = 2.5
lamb = 1.75

# and simply call the integration function
X = jd.jd_process(t_final, delta_t, a=a, b=b, xi=xi, lamb=lamb)







This will generate a jump diffusion process X of length int(10000/0.001) with the given parameters.

[image: A jump-difussion process]


Using jumpdiff to retrieve the parameters


Moments and Kramers─Moyal coefficients

Take the timeseries X and use the function moments to retrieve the conditional moments of the process.
For now let us focus on the shortest time lag, so we can best approximate the Kramers—Moyal coefficients.
For this case we can simply employ

	20

	edges, moments = jd.moments(timeseries = X)







In the array edges are the limits of our space, and in our array moments are recorded all 6 powers/order of our conditional moments.
Let us take a look at these before we proceed, to get acquainted with them.

We can plot the first moment with any conventional plotter, so lets use here plotly from matplotlib.
To visualise the first moment, simply use

	21
22

	import matplotlib.pyplot as plt
plt.plot(edges, moments[1]/delta_t)







[image: The 1st Kramers---Moyal coefficient]
The first moment here (i.e., the first Kramers—Moyal coefficient) is given solely by the drift term that we have selected -0.5*x.
In the plot we have also included the theoretical curve, which we know from having selected the value of a(x) in line 8.

Similarly, we can extract the second moment (i.e., the second Kramers—Moyal coefficient) is a mixture of both the contributions of the diffusive term \(b(x)\) and the jump terms \(\xi\) and \(\lambda\).

[image: The 2nd Kramers---Moyal coefficient]
You have this stored in moments[2].



Retrieving the jump-related terms

Naturally one of the most pertinent questions when addressing jump-diffusion processes is the possibility of recovering these same parameters from data. For the given jump-diffusion process we can use the jump_amplitude and jump_rate functions to non-parametrically estimate the jump amplitude \(\xi\) and \(\lambda\) terms.

After having the moments in hand, all we need is
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	# first estimate the jump amplitude
xi_est = jd.jump_amplitude(moments = moments)

# and now estimated the jump rate
lamb_est = jd.jump_rate(moments = moments)







which resulted in our case in (xi_est) ξ = 2.43 ± 0.17 and (lamb_est) λ = 1.744 * delta_t (don’t forget to divide lamb_est by delta_t)!
We can compare these with our chose values in lines 15-16.




Distinguishing pure diffusions from jump-diffusions

One important question when we have some time series – possibly from real-world data – is to be able to discern if this timeseries is a pure diffusion process (a continuous stochastic process) or a jump-diffusion process (a discontinuous stochastic process).
For this, jumpdiff has an easy to use function, called q_ratio.
The idea behind distinguishing continuous and discontinuous processes is simple:
diffusion processes diffuse over time, thus they take time to occupy space; jump-diffusion processes can jump, and thus statistically, they occupy all space very fast.

To analyse this let us design a simple example – with some numerically generated data – that shows the use of q_ratio and how to read it.

Let us generate two trajectories, using jd_process, denoted d_timeseries and j_timeseries, for diffusion timeseries and jumpy timeseries.
Naturally the first must not include a jump term.
To keep it simple, we will use the same parameters for both, expect for the jumps:
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	import jumpdiff as jd

# integration time and time sampling
t_final = 10000
delta_t = 0.01

# Drift function
def a(x):
    return -0.5*x

# Diffusion function
def b(x):
    return 0.75

# generate 2 trajectories
d_timeseries = jd.jd_process(t_final, delta_t, a=a, b=b, xi=0, lamb=0)
j_timeseries = jd.jd_process(t_final, delta_t, a=a, b=b, xi=2.5, lamb=1.75)







Note how xi and lamb are different for each process
To now examine the rate of diffusion of the processes, we need to generate a time arrow, which we denote lag.
This needs to be a integer list >0.

	18
19

	import numpy as np
lag = np.logspace(0, 3, 25, dtype=int)







Lastly we just need to can the q_ratio for our two timeseries

	20
21

	d_lag, d_Q = jd.q_ratio(lag, d_timeseries)
j_lag, j_Q = jd.q_ratio(lag, j_timeseries)







And with the help of matplotlib’s plotly, we can visualise the results in a double logarithmic scale

	22
23
24
25

	import matplotlib.plotly as plt

plt.loglog(d_lag, d_Q, '-', label='diffusion')
plt.loglog(j_lag, j_Q, 'o-', label='jump-diffusion')







[image: Q-ratio of a diffusion and a jump-diffusion process]
As we can see, the diffusion process grows with our time arrow lag, where the jump-diffusion is constant (does not depend on lag).
Jump processes will show a constant relation with code:lag, where diffusion processes a linear relation.
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Then on your favourite editor just use
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Jump-diffusion processes

We will show here how to: (1) generate trajectories of jump-diffusion processes; (2) retrieve the parameters from a single trajectory of a jump-diffusion process.
Naturally, if we already had some data – maybe from a real-world recording of a stochastic process – we would simply look at estimating the parameters for this process.


The theory

Jump-diffusion processes1, as the name suggest, are a mixed type of stochastic processes with a diffusive and a jump term.
One form of these processes which is mathematically traceable is given by the Stochastic Differential Equation [https://en.wikipedia.org/wiki/Stochastic_differential_equation]


\[\mathrm{d} X(t) = a(x,t)\;\mathrm{d} t + b(x,t)\;\mathrm{d} W(t) + \xi\;\mathrm{d} J(t),\]

which has four main elements: a drift term \(a(x,t)\), a diffusion term \(b(x,t)\), linked with a Wiener process \(W(t)\), a jump amplitude term \(\xi(x,t)\), which is given by a Gaussian distribution \(\mathcal{N}(0,\sigma_\xi^2)\) coupled with a jump rate \(\lambda\), which is the rate of the Poissonian jumps \(J(t)\).
You can find a good review on this topic in Ref. 2.



Integrating a jump-diffusion process

Let us use the functions in jumpdiff to generate a jump-difussion process, and subsequently retrieve the parameters. This is a good way to understand the usage of the integrator and the non-parametric retrieval of the parameters.

First we need to load our library. We will call it jd

	1

	import jumpdiff as jd







Let us thus define a jump-diffusion process and use jd_process to integrate it. Do notice here that we need the drift \(a(x,t)\) and diffusion \(b(x,t)\) as functions.
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	# integration time and time sampling
t_final = 10000
delta_t = 0.001

# A drift function
def a(x):
    return -0.5*x

# and a (constant) diffusion term
def b(x):
    return 0.75

# Now define a jump amplitude and rate
xi = 2.5
lamb = 1.75

# and simply call the integration function
X = jd.jd_process(t_final, delta_t, a=a, b=b, xi=xi, lamb=lamb)







This will generate a jump diffusion process X of length int(10000/0.001) with the given parameters.

[image: A jump-difussion process]


Using jumpdiff to retrieve the parameters


Moments and Kramers─Moyal coefficients

Take the timeseries X and use the function moments to retrieve the conditional moments of the process.
For now let us focus on the shortest time lag, so we can best approximate the Kramers—Moyal coefficients.
For this case we can simply employ

	20

	edges, moments = jd.moments(timeseries = X)







In the array edges are the limits of our space, and in our array moments are recorded all 6 powers/order of our conditional moments.
Let us take a look at these before we proceed, to get acquainted with them.

We can plot the first moment with any conventional plotter, so lets use here plotly from matplotlib.
To visualise the first moment, simply use

	21
22

	import matplotlib.pyplot as plt
plt.plot(edges, moments[1]/delta_t)







[image: The 1st Kramers---Moyal coefficient]
The first moment here (i.e., the first Kramers—Moyal coefficient) is given solely by the drift term that we have selected -0.5*x.
In the plot we have also included the theoretical curve, which we know from having selected the value of a(x) in line 8.

Similarly, we can extract the second moment (i.e., the second Kramers—Moyal coefficient) is a mixture of both the contributions of the diffusive term \(b(x)\) and the jump terms \(\xi\) and \(\lambda\).

[image: The 2nd Kramers---Moyal coefficient]
You have this stored in moments[2].



Retrieving the jump-related terms

Naturally one of the most pertinent questions when addressing jump-diffusion processes is the possibility of recovering these same parameters from data. For the given jump-diffusion process we can use the jump_amplitude and jump_rate functions to non-parametrically estimate the jump amplitude \(\xi\) and \(\lambda\) terms.

After having the moments in hand, all we need is
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	# first estimate the jump amplitude
xi_est = jd.jump_amplitude(moments = moments)

# and now estimated the jump rate
lamb_est = jd.jump_rate(moments = moments)







which resulted in our case in (xi_est) ξ = 2.43 ± 0.17 and (lamb_est) λ = 1.744 * delta_t (don’t forget to divide lamb_est by delta_t)!
We can compare these with our chose values in lines 15-16.






          

      

      

    

  

    
      
          
            
  
Distinguishing pure diffusions from jump-diffusions

One important question when we have some time series – possibly from real-world data – is to be able to discern if this timeseries is a pure diffusion process (a continuous stochastic process) or a jump-diffusion process (a discontinuous stochastic process).
For this, jumpdiff has an easy to use function, called q_ratio.
The idea behind distinguishing continuous and discontinuous processes is simple:
diffusion processes diffuse over time, thus they take time to occupy space; jump-diffusion processes can jump, and thus statistically, they occupy all space very fast.

To analyse this let us design a simple example – with some numerically generated data – that shows the use of q_ratio and how to read it.

Let us generate two trajectories, using jd_process, denoted d_timeseries and j_timeseries, for diffusion timeseries and jumpy timeseries.
Naturally the first must not include a jump term.
To keep it simple, we will use the same parameters for both, expect for the jumps:
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	import jumpdiff as jd

# integration time and time sampling
t_final = 10000
delta_t = 0.01

# Drift function
def a(x):
    return -0.5*x

# Diffusion function
def b(x):
    return 0.75

# generate 2 trajectories
d_timeseries = jd.jd_process(t_final, delta_t, a=a, b=b, xi=0, lamb=0)
j_timeseries = jd.jd_process(t_final, delta_t, a=a, b=b, xi=2.5, lamb=1.75)







Note how xi and lamb are different for each process
To now examine the rate of diffusion of the processes, we need to generate a time arrow, which we denote lag.
This needs to be a integer list >0.

	18
19

	import numpy as np
lag = np.logspace(0, 3, 25, dtype=int)







Lastly we just need to can the q_ratio for our two timeseries

	20
21

	d_lag, d_Q = jd.q_ratio(lag, d_timeseries)
j_lag, j_Q = jd.q_ratio(lag, j_timeseries)







And with the help of matplotlib’s plotly, we can visualise the results in a double logarithmic scale
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	import matplotlib.plotly as plt

plt.loglog(d_lag, d_Q, '-', label='diffusion')
plt.loglog(j_lag, j_Q, 'o-', label='jump-diffusion')







[image: Q-ratio of a diffusion and a jump-diffusion process]
As we can see, the diffusion process grows with our time arrow lag, where the jump-diffusion is constant (does not depend on lag).
Jump processes will show a constant relation with code:lag, where diffusion processes a linear relation.




          

      

      

    

  

    
      
          
            
  
Functions

Documentation for all the functions in jumpdiff.


Jump-diffusion timeseries generator


	
jumpdiff.jd_process.jd_process(time: float, delta_t: float, a: callable, b: callable, xi: float, lamb: float, init: float = None, solver: str = 'Euler', b_prime: callable = None) → numpy.ndarray

	Integrates a jump-diffusion process with drift a(x), diffusion b(x), jump
amplitude xi (\(\xi\)), and jump rate lamb (\(\lambda\)).


\[\mathrm{d} X(t) = a(x,t)\;\mathrm{d} t + b(x,t)\;\mathrm{d} W(t)
+ \xi\;\mathrm{d} J(t),\]

with \(J\) Poisson with jump rate \(\lambda\). This integrator has
both an Euler─Maruyama and a Milstein method of integration. For Milstein
one has to introduce the derivative of the diffusion term b, denoted
b_prime.


	Parameters

	
	time (float > 0) – Total integration time. Positive float or int.


	delta_t (float > 0) – Time sampling, the smaller the better.


	a (callable) – The drift function. Can be a function of a lambda. For an
Ornstein─Uhlenbeck process with drift -2x, a takes the form


a =  lambda x: -2x.







	b (callable) – The diffusion function. Can be a function of a lambda. For an
Ornstein─Uhlenbeck process with diffusion 1, a takes the form


b =  lambda x: 1.







	xi (float > 0) – Variance of the jump amplitude, which will be turned into a normal
distribution like \(\mathcal{N}\)(0,√xi).


	lamb (float > 0) – Jump rate of the Poissonian jumps. This is implemented as the numpy
function np.random.poisson(lam = lamb * delta_t).


	init (float (defaul None)) – Initial conditions. If None given, generates a random value from a
normal distribution ~ \(\mathcal{N}\)(0,√delta_t).


	solver ('Euler' or 'Milstein' (defaul 'Euler')) – The regular Euler─Maruyama solver ‘Euler’ is the default, with an order
of √delta_t. To employ a state-dependent diffusion, i.e., b(x) as a
function of x, the Milstein scheme has an order of delta_t. You must
introduce as well the derivative of b(x), i.e., b’(x), as the argument
b_prime.






	Returns

	X – Timeseries of size int(time/delta_t)



	Return type

	np.array











Moments


	
jumpdiff.moments.moments(timeseries: numpy.ndarray, bw: float = None, bins: numpy.ndarray = None, power: int = 6, lag: list = [1], correction: bool = True, norm: bool = False, kernel: callable = None, tol: float = 1e-10, conv_method: str = 'auto', verbose: bool = False) → numpy.ndarray

	Estimates the moments of the Kramers─Moyal expansion from a timeseries using
a Nadaraya─Watson kernel estimator method. These later can be turned into
the drift and diffusion coefficients after normalisation.


	Parameters

	
	timeseries (np.ndarray) – A 1-dimensional timeseries.


	bw (float) – Desired bandwidth of the kernel. A value of 1 occupies the full space of
the bin space. Recommended are values 0.005 < bw < 0.4.


	bins (np.ndarray (default None)) – The number of bins for each dimension, defaults to np.array([5000]).
This is the underlying space for the Kramers─Moyal conditional moments.


	power (int (default 6)) – Upper limit of the the Kramers─Moyal conditional moments to calculate.
It will generate all Kramers─Moyal conditional moments up to power.


	lag (list (default 1)) – Calculates the Kramers─Moyal conditional moments at each indicated lag,
i.e., for timeseries[::lag[]]. Defaults to 1, the shortest
timestep in the data.


	corrections (bool (default True)) – Implements the second-order corrections of the Kramers─Moyal conditional
moments directly


	norm (bool (default False)) – Sets the normalisation. False returns the Kramers─Moyal conditional
moments, and True returns the Kramers─Moyal coefficients.


	kernel (callable (default None)) – Kernel used to convolute with the Kramers─Moyal conditional moments. To
select example an Epanechnikov kernel use


kernel = kernels.epanechnikov




If None the Epanechnikov kernel will be used.




	tol (float (default 1e-10)) – Round to zero absolute values smaller than tol, after convolutions.


	conv_method (str (default auto)) – A string indicating which method to use to calculate the convolution.
docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.


	verbose (bool (default False)) – If True will report on the bandwidth used.






	Returns

	
	edges (np.ndarray) – The bin edges with shape (D,bins.shape) of the calculated moments.


	moments (np.ndarray) – The calculated moments from the Kramers─Moyal expansion of the
timeseries at each lag. To extract the selected orders of the moments,
use moments[i,:,j], with i the order according to powers, j
the lag (if any given).















	
jumpdiff.moments.corrections(m: numpy.ndarray, power: int)

	The moments function will by default apply the corrections. You can turn
the corrections off in that fuction by setting corrections = False.

Second-order corrections of the Kramers─Moyal coefficients (conditional
moments), given by


\[\begin{split}F_1 &= M_1,\\
F_2 &= \frac{1}{2}\!  \left(M_2-M_1^2\right ), \\
F_3 &= \frac{1}{6}\!  \left( M_3-3M_1M_2+3M_1^3 \right ), \\
F_4 &= \frac{1}{24}\! \left(M_4-4M_1M_3+18M_1^2M_2-3M_2^2
    -15M_1^4 \right) , \\
F_5 &= \frac{1}{120}\!\left(M_5 -5 M_1 M_4 +30 M_1^2 M_3 -150 M_1^3 M_2
    +45 M_1 M_2^2-10 M_2 M_3 + 105 M_1^5 \right) \\
F_6 &= \frac{1} {720}\! \left (M_6 -6 M_1 M_5 + 45 M_1^2 M_4 -300 M_1^3 M_3
    +1575 M_1^4 M_2-675 M_1^2 M_2^2 \right. \\
    & \qquad \left . \ +180 M_1 M_2 M_3+45 M_2^3 -15 M_2 M_4-10 M_3^2
    - 945 M_1^6\right ) \, ,\end{split}\]

with the prefactor the normalisation, i.e., the normalised results are the
Kramers─Moyal coefficients. If norm is False, this results in the
Kramers─Moyal conditional moments.


	Parameters

	
	(moments) (m) – The calculated conditional moments from the Kramers─Moyal expansion of
the at each lag. To extract the selected orders of the moments use
moments[i,:,j], with i the order according to powers, j the
lag.


	power (int) – Upper limit of the Kramers─Moyal conditional moments to calculate.
It will generate all Kramers─Moyal conditional moments up to power.






	Returns

	F – The corrections of the calculated Kramers─Moyal conditional moments
from the Kramers─Moyal expansion of the timeseries at each lag. To
extract the selected orders of the moments, use F[i,:,j], with i
the order according to powers, j the lag (if any introduced).



	Return type

	np.ndarray











Parameters


	
jumpdiff.parameters.jump_amplitude(moments: numpy.ndarray, tol: float = 1e-10, full: bool = False, verbose: bool = False) → numpy.ndarray

	Retrieves the jump amplitude xi (\(\xi\)) via


\[\lambda(x,t) = \frac{M_4(x,t)}{3\sigma_{\xi}^4}.\]

Take notice that the different normalisation of the moments leads to a
different results.


	Parameters

	
	moments (np.ndarray) – Moments extracted with the function moments. Needs moments up to
order 6.


	tol (float (defaul 1e-10)) – Toleration for the division of the moments.


	full (bool (defaul False)) – If True returns also the (biased) weighed standard deviation of the
averaging process.


	verbose (bool (defaul True)) – Prints the result.






	Returns

	xi_est – Estimator of the jump amplitude xi (\(\xi\)).



	Return type

	np.ndarray





References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the
stochastic behavior of complex time series.’ Scientific Reports, 6, 35435,
2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt
transitions in stochastic dynamics.’ New Journal of Physics, 20(11):113043,
2018. doi: 10.1088/1367-2630/aaf0d7.






	
jumpdiff.parameters.jump_rate(moments: numpy.ndarray, xi_est: numpy.ndarray = None, tol: float = 1e-10, full: bool = False, verbose: bool = False) → numpy.ndarray

	Retrieves the jump rate lamb (\(\lambda\)) via


\[\sigma_{\xi}^2 = \frac{M_6(x,t)}{5M_4(x,t)}.\]

Take notice that the different normalisation of the moments leads to a
different results.


	Parameters

	
	moments (np.ndarray) – moments extracted with the function ‘moments’. Needs moments of order 6.


	tol (float (defaul 1e-10)) – Toleration for the division of the moments.


	full (bool (defaul False)) – If True returns also the (biased) weighed standard deviation of the
averaging process.


	verbose (bool (defaul True)) – Prints the result.






	Returns

	xi_est – Estimator on the jump rate lamb (\(\lambda\))



	Return type

	np.ndarray





References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the
stochastic behavior of complex time series.’ Scientific Reports, 6, 35435,
2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt
transitions in stochastic dynamics.’ New Journal of Physics, 20(11):113043,
2018. doi: 10.1088/1367-2630/aaf0d7.







Q-ratio


	
jumpdiff.q_ratio.q_ratio(lag: numpy.ndarray, timeseries: numpy.ndarray, loc: int = None, correction: bool = False) → numpy.ndarray

	q_ratio method to distinguish pure diffusion from jump-diffusion timeseries,
Given by the relation of the 4th and 6th Kramers─Moyal coefficient with
increasing lag


\[\begin{split}Q(x,\tau) = \frac{D_6(x,\tau)}{5 D_4(x,\tau)} = \left\{\begin{array}{ll}
    b(x)^2 \tau, & \text{diffusive}  \\ \sigma_\xi^2(x), & \text{jumpy}
\end{array}\right.\end{split}\]


	Parameters

	
	lag (np.ndarray of ints) – An array with the time-lag to extract the Kramers–Moyal coefficient for
different lags.


	timeseries (np.ndarray) – A 1-dimensional timeseries.


	loc (float (defaul None)) – Use a particular point in space to calculate the ratio. If None
given, the maximum of the probability density function is taken.


	corrections (bool (defaul False)) – Select whether to use corrective terms.






	Returns

	
	lag (np.ndarray of ints) – Same as input, but only lag > 0 and as ints.


	ratio (np.ndarray of len(lag)) – Ratio of the sixth-order over forth-order Kramers–Moyal coefficient.










References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the
stochastic behavior of complex time series.’ Scientific Reports, 6, 35435,
2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt
transitions in stochastic dynamics.’ New Journal of Physics, 20(11):113043,
2018. doi: 10.1088/1367-2630/aaf0d7.







Formulae


	
jumpdiff.formulae.m_formula(power, tau=True)

	Generate the formula for the conditional moments with second-order
corrections based on the relation with the ordinary Bell polynomials


\[M_n(x^{\prime},\tau) \sim (n!)\tau D_n(x^{\prime}) + \frac{(n!)\tau^2}{2}
\sum_{m=1}^{n-1}   D_m(x^{\prime})  D_{n-m}(x^{\prime})\]


	Parameters

	power (int) – Desired order of the formula.



	Returns

	term – Expression up to given power.



	Return type

	sympy.symbols










	
jumpdiff.formulae.f_formula(power)

	Generate the formula for the conditional moments with second-order
corrections based on the relation with the ordinary Bell polynomials


\[\begin{split}D_n(x) &=  \frac{1}{\tau (n!)} \bigg[ \hat{B}_{n,1}
\left(M_1(x,\tau),M_2(x,\tau),\ldots,M_{n}(x,\tau)\right) \\
&\qquad  \left.-\frac{\tau}{2} \hat{B}_{n,2}
\left(M_1(x,\tau),M_2(x,\tau),\ldots,M_{n-1}(x,\tau)\right)\right].\end{split}\]


	Parameters

	power (int) – Desired order of the formula.



	Returns

	term – Expression up to given power.



	Return type

	sympy.symbols










	
jumpdiff.formulae.f_formula_solver(power)

	Generate the reciprocal relation of the moments to the Kramers─Moyal
coefficients by sequential iteration.


\[\begin{split}D_n(x) &=  \frac{1}{\tau (n!)} \bigg[ \hat{B}_{n,1}
\left(M_1(x,\tau),M_2(x,\tau),\ldots,M_{n}(x,\tau)\right) \\
&\qquad  \left.-\frac{\tau}{2} \hat{B}_{n,2}
\left(M_1(x,\tau),M_2(x,\tau),\ldots,M_{n-1}(x,\tau)\right)\right].\end{split}\]


	Parameters

	power (int) – Desired order of the formula.



	Returns

	term – Expression up to given power.



	Return type

	sympy.symbols











Helping functions


Kernels function


	
jumpdiff.kernels.kernel(kernel_func)

	Transforms a kernel function into a scaled kernel function (for a certain
bandwidth bw).


	Currently implemented kernels are:

	Epanechnikov, Gaussian, Uniform, Triangular, Quartic.





For a good overview of various kernels see
https://en.wikipedia.org/wiki/Kernel_(statistics)






	
jumpdiff.kernels.volume_unit_ball(dims: int) → float

	Returns the volume of a unit ball in dimensions dims.






	
jumpdiff.kernels.epanechnikov(x: numpy.ndarray, dims: int) → numpy.ndarray

	The Epanechnikov kernel in dimensions dims.






	
jumpdiff.kernels.gaussian(x: numpy.ndarray, dims: int) → numpy.ndarray

	Gaussian kernel in dimensions dims.






	
jumpdiff.kernels.uniform(x: numpy.ndarray, dims: int) → numpy.ndarray

	Uniform, or rectangular kernel in dimensions dims






	
jumpdiff.kernels.triagular(x: numpy.ndarray, dims: int) → numpy.ndarray

	Triagular kernel in dimensions dims






	
jumpdiff.kernels.quartic(x: numpy.ndarray, dims: int) → numpy.ndarray

	Quartic, or biweight kernel in dimensions dims










          

      

      

    

  

    
      
          
            
  
License

MIT License

Copyright (c) 2019-2021 Leonardo Rydin Gorjão

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.



Contact

If you need help with something, find a bug, issue, or typo on the repository
or in the code, you can contact me here: leonardo.rydin@gmail.com or open an
issue on the GitHub repository.
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Other functions and options

Include in this package is also the Milstein scheme [https://en.wikipedia.org/wiki/Milstein_method] of integration, particularly important when the diffusion term has some spacial x dependence. moments can actually calculate the conditional moments for different lags, using the parameter lag.

In formulae the set of formulas needed to calculate the second order corrections are given (in sympy).




          

      

      

    

  

    
      
          
            
  
Formulae


	
jumpdiff.formulae.m_formula(power, tau=True)

	Generate the formula for the conditional moments with second-order
corrections based on the relation with the ordinary Bell polynomials


\[M_n(x^{\prime},\tau) \sim (n!)\tau D_n(x^{\prime}) + \frac{(n!)\tau^2}{2}
\sum_{m=1}^{n-1}   D_m(x^{\prime})  D_{n-m}(x^{\prime})\]


	Parameters

	power (int) – Desired order of the formula.



	Returns

	term – Expression up to given power.



	Return type

	sympy.symbols










	
jumpdiff.formulae.f_formula(power)

	Generate the formula for the conditional moments with second-order
corrections based on the relation with the ordinary Bell polynomials


\[\begin{split}D_n(x) &=  \frac{1}{\tau (n!)} \bigg[ \hat{B}_{n,1}
\left(M_1(x,\tau),M_2(x,\tau),\ldots,M_{n}(x,\tau)\right) \\
&\qquad  \left.-\frac{\tau}{2} \hat{B}_{n,2}
\left(M_1(x,\tau),M_2(x,\tau),\ldots,M_{n-1}(x,\tau)\right)\right].\end{split}\]


	Parameters

	power (int) – Desired order of the formula.



	Returns

	term – Expression up to given power.



	Return type

	sympy.symbols










	
jumpdiff.formulae.f_formula_solver(power)

	Generate the reciprocal relation of the moments to the Kramers─Moyal
coefficients by sequential iteration.


\[\begin{split}D_n(x) &=  \frac{1}{\tau (n!)} \bigg[ \hat{B}_{n,1}
\left(M_1(x,\tau),M_2(x,\tau),\ldots,M_{n}(x,\tau)\right) \\
&\qquad  \left.-\frac{\tau}{2} \hat{B}_{n,2}
\left(M_1(x,\tau),M_2(x,\tau),\ldots,M_{n-1}(x,\tau)\right)\right].\end{split}\]


	Parameters

	power (int) – Desired order of the formula.



	Returns

	term – Expression up to given power.



	Return type

	sympy.symbols












          

      

      

    

  

    
      
          
            
  
Helping functions


Kernels function


	
jumpdiff.kernels.kernel(kernel_func)

	Transforms a kernel function into a scaled kernel function (for a certain
bandwidth bw).


	Currently implemented kernels are:

	Epanechnikov, Gaussian, Uniform, Triangular, Quartic.





For a good overview of various kernels see
https://en.wikipedia.org/wiki/Kernel_(statistics)






	
jumpdiff.kernels.volume_unit_ball(dims: int) → float

	Returns the volume of a unit ball in dimensions dims.






	
jumpdiff.kernels.epanechnikov(x: numpy.ndarray, dims: int) → numpy.ndarray

	The Epanechnikov kernel in dimensions dims.






	
jumpdiff.kernels.gaussian(x: numpy.ndarray, dims: int) → numpy.ndarray

	Gaussian kernel in dimensions dims.






	
jumpdiff.kernels.uniform(x: numpy.ndarray, dims: int) → numpy.ndarray

	Uniform, or rectangular kernel in dimensions dims






	
jumpdiff.kernels.triagular(x: numpy.ndarray, dims: int) → numpy.ndarray

	Triagular kernel in dimensions dims






	
jumpdiff.kernels.quartic(x: numpy.ndarray, dims: int) → numpy.ndarray

	Quartic, or biweight kernel in dimensions dims









          

      

      

    

  

    
      
          
            
  
Jump-diffusion timeseries generator


	
jumpdiff.jd_process.jd_process(time: float, delta_t: float, a: callable, b: callable, xi: float, lamb: float, init: float = None, solver: str = 'Euler', b_prime: callable = None) → numpy.ndarray

	Integrates a jump-diffusion process with drift a(x), diffusion b(x), jump
amplitude xi (\(\xi\)), and jump rate lamb (\(\lambda\)).


\[\mathrm{d} X(t) = a(x,t)\;\mathrm{d} t + b(x,t)\;\mathrm{d} W(t)
+ \xi\;\mathrm{d} J(t),\]

with \(J\) Poisson with jump rate \(\lambda\). This integrator has
both an Euler─Maruyama and a Milstein method of integration. For Milstein
one has to introduce the derivative of the diffusion term b, denoted
b_prime.


	Parameters

	
	time (float > 0) – Total integration time. Positive float or int.


	delta_t (float > 0) – Time sampling, the smaller the better.


	a (callable) – The drift function. Can be a function of a lambda. For an
Ornstein─Uhlenbeck process with drift -2x, a takes the form


a =  lambda x: -2x.







	b (callable) – The diffusion function. Can be a function of a lambda. For an
Ornstein─Uhlenbeck process with diffusion 1, a takes the form


b =  lambda x: 1.







	xi (float > 0) – Variance of the jump amplitude, which will be turned into a normal
distribution like \(\mathcal{N}\)(0,√xi).


	lamb (float > 0) – Jump rate of the Poissonian jumps. This is implemented as the numpy
function np.random.poisson(lam = lamb * delta_t).


	init (float (defaul None)) – Initial conditions. If None given, generates a random value from a
normal distribution ~ \(\mathcal{N}\)(0,√delta_t).


	solver ('Euler' or 'Milstein' (defaul 'Euler')) – The regular Euler─Maruyama solver ‘Euler’ is the default, with an order
of √delta_t. To employ a state-dependent diffusion, i.e., b(x) as a
function of x, the Milstein scheme has an order of delta_t. You must
introduce as well the derivative of b(x), i.e., b’(x), as the argument
b_prime.






	Returns

	X – Timeseries of size int(time/delta_t)



	Return type

	np.array












          

      

      

    

  

    
      
          
            
  
Moments


	
jumpdiff.moments.moments(timeseries: numpy.ndarray, bw: float = None, bins: numpy.ndarray = None, power: int = 6, lag: list = [1], correction: bool = True, norm: bool = False, kernel: callable = None, tol: float = 1e-10, conv_method: str = 'auto', verbose: bool = False) → numpy.ndarray

	Estimates the moments of the Kramers─Moyal expansion from a timeseries using
a Nadaraya─Watson kernel estimator method. These later can be turned into
the drift and diffusion coefficients after normalisation.


	Parameters

	
	timeseries (np.ndarray) – A 1-dimensional timeseries.


	bw (float) – Desired bandwidth of the kernel. A value of 1 occupies the full space of
the bin space. Recommended are values 0.005 < bw < 0.4.


	bins (np.ndarray (default None)) – The number of bins for each dimension, defaults to np.array([5000]).
This is the underlying space for the Kramers─Moyal conditional moments.


	power (int (default 6)) – Upper limit of the the Kramers─Moyal conditional moments to calculate.
It will generate all Kramers─Moyal conditional moments up to power.


	lag (list (default 1)) – Calculates the Kramers─Moyal conditional moments at each indicated lag,
i.e., for timeseries[::lag[]]. Defaults to 1, the shortest
timestep in the data.


	corrections (bool (default True)) – Implements the second-order corrections of the Kramers─Moyal conditional
moments directly


	norm (bool (default False)) – Sets the normalisation. False returns the Kramers─Moyal conditional
moments, and True returns the Kramers─Moyal coefficients.


	kernel (callable (default None)) – Kernel used to convolute with the Kramers─Moyal conditional moments. To
select example an Epanechnikov kernel use


kernel = kernels.epanechnikov




If None the Epanechnikov kernel will be used.




	tol (float (default 1e-10)) – Round to zero absolute values smaller than tol, after convolutions.


	conv_method (str (default auto)) – A string indicating which method to use to calculate the convolution.
docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.


	verbose (bool (default False)) – If True will report on the bandwidth used.






	Returns

	
	edges (np.ndarray) – The bin edges with shape (D,bins.shape) of the calculated moments.


	moments (np.ndarray) – The calculated moments from the Kramers─Moyal expansion of the
timeseries at each lag. To extract the selected orders of the moments,
use moments[i,:,j], with i the order according to powers, j
the lag (if any given).















	
jumpdiff.moments.corrections(m: numpy.ndarray, power: int)

	The moments function will by default apply the corrections. You can turn
the corrections off in that fuction by setting corrections = False.

Second-order corrections of the Kramers─Moyal coefficients (conditional
moments), given by


\[\begin{split}F_1 &= M_1,\\
F_2 &= \frac{1}{2}\!  \left(M_2-M_1^2\right ), \\
F_3 &= \frac{1}{6}\!  \left( M_3-3M_1M_2+3M_1^3 \right ), \\
F_4 &= \frac{1}{24}\! \left(M_4-4M_1M_3+18M_1^2M_2-3M_2^2
    -15M_1^4 \right) , \\
F_5 &= \frac{1}{120}\!\left(M_5 -5 M_1 M_4 +30 M_1^2 M_3 -150 M_1^3 M_2
    +45 M_1 M_2^2-10 M_2 M_3 + 105 M_1^5 \right) \\
F_6 &= \frac{1} {720}\! \left (M_6 -6 M_1 M_5 + 45 M_1^2 M_4 -300 M_1^3 M_3
    +1575 M_1^4 M_2-675 M_1^2 M_2^2 \right. \\
    & \qquad \left . \ +180 M_1 M_2 M_3+45 M_2^3 -15 M_2 M_4-10 M_3^2
    - 945 M_1^6\right ) \, ,\end{split}\]

with the prefactor the normalisation, i.e., the normalised results are the
Kramers─Moyal coefficients. If norm is False, this results in the
Kramers─Moyal conditional moments.


	Parameters

	
	(moments) (m) – The calculated conditional moments from the Kramers─Moyal expansion of
the at each lag. To extract the selected orders of the moments use
moments[i,:,j], with i the order according to powers, j the
lag.


	power (int) – Upper limit of the Kramers─Moyal conditional moments to calculate.
It will generate all Kramers─Moyal conditional moments up to power.






	Returns

	F – The corrections of the calculated Kramers─Moyal conditional moments
from the Kramers─Moyal expansion of the timeseries at each lag. To
extract the selected orders of the moments, use F[i,:,j], with i
the order according to powers, j the lag (if any introduced).



	Return type

	np.ndarray












          

      

      

    

  

    
      
          
            
  
Parameters


	
jumpdiff.parameters.jump_amplitude(moments: numpy.ndarray, tol: float = 1e-10, full: bool = False, verbose: bool = False) → numpy.ndarray

	Retrieves the jump amplitude xi (\(\xi\)) via


\[\lambda(x,t) = \frac{M_4(x,t)}{3\sigma_{\xi}^4}.\]

Take notice that the different normalisation of the moments leads to a
different results.


	Parameters

	
	moments (np.ndarray) – Moments extracted with the function moments. Needs moments up to
order 6.


	tol (float (defaul 1e-10)) – Toleration for the division of the moments.


	full (bool (defaul False)) – If True returns also the (biased) weighed standard deviation of the
averaging process.


	verbose (bool (defaul True)) – Prints the result.






	Returns

	xi_est – Estimator of the jump amplitude xi (\(\xi\)).



	Return type

	np.ndarray





References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the
stochastic behavior of complex time series.’ Scientific Reports, 6, 35435,
2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt
transitions in stochastic dynamics.’ New Journal of Physics, 20(11):113043,
2018. doi: 10.1088/1367-2630/aaf0d7.






	
jumpdiff.parameters.jump_rate(moments: numpy.ndarray, xi_est: numpy.ndarray = None, tol: float = 1e-10, full: bool = False, verbose: bool = False) → numpy.ndarray

	Retrieves the jump rate lamb (\(\lambda\)) via


\[\sigma_{\xi}^2 = \frac{M_6(x,t)}{5M_4(x,t)}.\]

Take notice that the different normalisation of the moments leads to a
different results.


	Parameters

	
	moments (np.ndarray) – moments extracted with the function ‘moments’. Needs moments of order 6.


	tol (float (defaul 1e-10)) – Toleration for the division of the moments.


	full (bool (defaul False)) – If True returns also the (biased) weighed standard deviation of the
averaging process.


	verbose (bool (defaul True)) – Prints the result.






	Returns

	xi_est – Estimator on the jump rate lamb (\(\lambda\))



	Return type

	np.ndarray





References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the
stochastic behavior of complex time series.’ Scientific Reports, 6, 35435,
2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt
transitions in stochastic dynamics.’ New Journal of Physics, 20(11):113043,
2018. doi: 10.1088/1367-2630/aaf0d7.








          

      

      

    

  

    
      
          
            
  
Q-ratio


	
jumpdiff.q_ratio.q_ratio(lag: numpy.ndarray, timeseries: numpy.ndarray, loc: int = None, correction: bool = False) → numpy.ndarray

	q_ratio method to distinguish pure diffusion from jump-diffusion timeseries,
Given by the relation of the 4th and 6th Kramers─Moyal coefficient with
increasing lag


\[\begin{split}Q(x,\tau) = \frac{D_6(x,\tau)}{5 D_4(x,\tau)} = \left\{\begin{array}{ll}
    b(x)^2 \tau, & \text{diffusive}  \\ \sigma_\xi^2(x), & \text{jumpy}
\end{array}\right.\end{split}\]


	Parameters

	
	lag (np.ndarray of ints) – An array with the time-lag to extract the Kramers–Moyal coefficient for
different lags.


	timeseries (np.ndarray) – A 1-dimensional timeseries.


	loc (float (defaul None)) – Use a particular point in space to calculate the ratio. If None
given, the maximum of the probability density function is taken.


	corrections (bool (defaul False)) – Select whether to use corrective terms.






	Returns

	
	lag (np.ndarray of ints) – Same as input, but only lag > 0 and as ints.


	ratio (np.ndarray of len(lag)) – Ratio of the sixth-order over forth-order Kramers–Moyal coefficient.










References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the
stochastic behavior of complex time series.’ Scientific Reports, 6, 35435,
2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt
transitions in stochastic dynamics.’ New Journal of Physics, 20(11):113043,
2018. doi: 10.1088/1367-2630/aaf0d7.
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