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jumpdiff is a python library with non-parametric Nadaraya—Watson estimators to extract the parameters of
jump-diffusion processes. With jumpdiff one can extract the parameters of a jump-diffusion process from one-
dimensional timeseries, employing both a kernel-density estimation method combined with a set on second-order
corrections for a precise retrieval of the parameters for short timeseries.
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CHAPTER 1

Installation

To install jumpdiff simply use

pip install jumpdiff

Then on your favourite editor just use

import jumpdiff as jd

The library depends on numpy, scipy, and sympy.
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CHAPTER 2

Jump-diffusion processes

We will show here how to: (1) generate trajectories of jump-diffusion processes; (2) retrieve the parameters from
a single trajectory of a jump-diffusion process. Naturally, if we already had some data – maybe from a real-world
recording of a stochastic process – we would simply look at estimating the parameters for this process.

2.1 The theory

Jump-diffusion processes1, as the name suggest, are a mixed type of stochastic processes with a diffusive and a jump
term. One form of these processes which is mathematically traceable is given by the Stochastic Differential Equation

d𝑋(𝑡) = 𝑎(𝑥, 𝑡) d𝑡+ 𝑏(𝑥, 𝑡) d𝑊 (𝑡) + 𝜉 d𝐽(𝑡),

which has four main elements: a drift term 𝑎(𝑥, 𝑡), a diffusion term 𝑏(𝑥, 𝑡), linked with a Wiener process 𝑊 (𝑡), a jump
amplitude term 𝜉(𝑥, 𝑡), which is given by a Gaussian distribution 𝒩 (0, 𝜎2

𝜉 ) coupled with a jump rate 𝜆, which is the
rate of the Poissonian jumps 𝐽(𝑡). You can find a good review on this topic in Ref. 2.

2.2 Integrating a jump-diffusion process

Let us use the functions in jumpdiff to generate a jump-difussion process, and subsequently retrieve the parameters.
This is a good way to understand the usage of the integrator and the non-parametric retrieval of the parameters.

First we need to load our library. We will call it jd

1 import jumpdiff as jd

Let us thus define a jump-diffusion process and use jd_process to integrate it. Do notice here that we need the
drift 𝑎(𝑥, 𝑡) and diffusion 𝑏(𝑥, 𝑡) as functions.

5
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2 # integration time and time sampling
3 t_final = 10000
4 delta_t = 0.001
5

6 # A drift function
7 def a(x):
8 return -0.5*x
9

10 # and a (constant) diffusion term
11 def b(x):
12 return 0.75
13

14 # Now define a jump amplitude and rate
15 xi = 2.5
16 lamb = 1.75
17

18 # and simply call the integration function
19 X = jd.jd_process(t_final, delta_t, a=a, b=b, xi=xi, lamb=lamb)

This will generate a jump diffusion process X of length int(10000/0.001) with the given parameters.

2.3 Using jumpdiff to retrieve the parameters

2.3.1 Moments and Kramers Moyal coefficients

Take the timeseries X and use the function moments to retrieve the conditional moments of the process. For now let
us focus on the shortest time lag, so we can best approximate the Kramers—Moyal coefficients. For this case we can
simply employ

20 edges, moments = jd.moments(timeseries = X)

In the array edges are the limits of our space, and in our array moments are recorded all 6 powers/order of our
conditional moments. Let us take a look at these before we proceed, to get acquainted with them.

We can plot the first moment with any conventional plotter, so lets use here plotly from matplotlib. To visualise
the first moment, simply use

6 Chapter 2. Jump-diffusion processes
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21 import matplotlib.pyplot as plt
22 plt.plot(edges, moments[1]/delta_t)

The first moment here (i.e., the first Kramers—Moyal coefficient) is given solely by the drift term that we have selected
-0.5*x. In the plot we have also included the theoretical curve, which we know from having selected the value of
a(x) in line 8.

Similarly, we can extract the second moment (i.e., the second Kramers—Moyal coefficient) is a mixture of both the
contributions of the diffusive term 𝑏(𝑥) and the jump terms 𝜉 and 𝜆.

You have this stored in moments[2].

2.3.2 Retrieving the jump-related terms

Naturally one of the most pertinent questions when addressing jump-diffusion processes is the possibility of recovering
these same parameters from data. For the given jump-diffusion process we can use the jump_amplitude and
jump_rate functions to non-parametrically estimate the jump amplitude 𝜉 and 𝜆 terms.

After having the moments in hand, all we need is

2.3. Using jumpdiff to retrieve the parameters 7
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23 # first estimate the jump amplitude
24 xi_est = jd.jump_amplitude(moments = moments)
25

26 # and now estimated the jump rate
27 lamb_est = jd.jump_rate(moments = moments)

which resulted in our case in (xi_est) 𝜉 = 2.43 ± 0.17 and (lamb_est) 𝜆 = 1.744 * delta_t
(don’t forget to divide lamb_est by delta_t)! We can compare these with our chose values in lines 15-16.

2.4 Distinguishing pure diffusions from jump-diffusions

One important question when we have some time series – possibly from real-world data – is to be able to discern if this
timeseries is a pure diffusion process (a continuous stochastic process) or a jump-diffusion process (a discontinuous
stochastic process). For this, jumpdiff has an easy to use function, called q_ratio. The idea behind distinguishing
continuous and discontinuous processes is simple: diffusion processes diffuse over time, thus they take time to occupy
space; jump-diffusion processes can jump, and thus statistically, they occupy all space very fast.

To analyse this let us design a simple example – with some numerically generated data – that shows the use of
q_ratio and how to read it.

Let us generate two trajectories, using jd_process, denoted d_timeseries and j_timeseries, for diffusion
timeseries and jumpy timeseries. Naturally the first must not include a jump term. To keep it simple, we will use the
same parameters for both, expect for the jumps:

1 import jumpdiff as jd
2

3 # integration time and time sampling
4 t_final = 10000
5 delta_t = 0.01
6

7 # Drift function
8 def a(x):
9 return -0.5*x

10

11 # Diffusion function
12 def b(x):
13 return 0.75
14

15 # generate 2 trajectories
16 d_timeseries = jd.jd_process(t_final, delta_t, a=a, b=b, xi=0, lamb=0)
17 j_timeseries = jd.jd_process(t_final, delta_t, a=a, b=b, xi=2.5, lamb=1.75)

Note how xi and lamb are different for each process To now examine the rate of diffusion of the processes, we need
to generate a time arrow, which we denote lag. This needs to be a integer list >0.

18 import numpy as np
19 lag = np.logspace(0, 3, 25, dtype=int)

Lastly we just need to can the q_ratio for our two timeseries

20 d_lag, d_Q = jd.q_ratio(lag, d_timeseries)
21 j_lag, j_Q = jd.q_ratio(lag, j_timeseries)

And with the help of matplotlib’s plotly, we can visualise the results in a double logarithmic scale

8 Chapter 2. Jump-diffusion processes
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22 import matplotlib.plotly as plt
23

24 plt.loglog(d_lag, d_Q, '-', label='diffusion')
25 plt.loglog(j_lag, j_Q, 'o-', label='jump-diffusion')

As we can see, the diffusion process grows with our time arrow lag, where the jump-diffusion is constant (does
not depend on lag). Jump processes will show a constant relation with code:lag, where diffusion processes a linear
relation.

2.4. Distinguishing pure diffusions from jump-diffusions 9
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CHAPTER 3

Table of Content

3.1 Installation

To install jumpdiff simply use

pip install jumpdiff

Then on your favourite editor just use

import jumpdiff as jd

The library depends on numpy, scipy, and sympy.

3.2 Jump-diffusion processes

We will show here how to: (1) generate trajectories of jump-diffusion processes; (2) retrieve the parameters from
a single trajectory of a jump-diffusion process. Naturally, if we already had some data – maybe from a real-world
recording of a stochastic process – we would simply look at estimating the parameters for this process.

3.2.1 The theory

Jump-diffusion processes1, as the name suggest, are a mixed type of stochastic processes with a diffusive and a jump
term. One form of these processes which is mathematically traceable is given by the Stochastic Differential Equation

d𝑋(𝑡) = 𝑎(𝑥, 𝑡) d𝑡+ 𝑏(𝑥, 𝑡) d𝑊 (𝑡) + 𝜉 d𝐽(𝑡),

which has four main elements: a drift term 𝑎(𝑥, 𝑡), a diffusion term 𝑏(𝑥, 𝑡), linked with a Wiener process 𝑊 (𝑡), a jump
amplitude term 𝜉(𝑥, 𝑡), which is given by a Gaussian distribution 𝒩 (0, 𝜎2

𝜉 ) coupled with a jump rate 𝜆, which is the
rate of the Poissonian jumps 𝐽(𝑡). You can find a good review on this topic in Ref. 2.

11
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3.2.2 Integrating a jump-diffusion process

Let us use the functions in jumpdiff to generate a jump-difussion process, and subsequently retrieve the parameters.
This is a good way to understand the usage of the integrator and the non-parametric retrieval of the parameters.

First we need to load our library. We will call it jd

1 import jumpdiff as jd

Let us thus define a jump-diffusion process and use jd_process to integrate it. Do notice here that we need the
drift 𝑎(𝑥, 𝑡) and diffusion 𝑏(𝑥, 𝑡) as functions.

2 # integration time and time sampling
3 t_final = 10000
4 delta_t = 0.001
5

6 # A drift function
7 def a(x):
8 return -0.5*x
9

10 # and a (constant) diffusion term
11 def b(x):
12 return 0.75
13

14 # Now define a jump amplitude and rate
15 xi = 2.5
16 lamb = 1.75
17

18 # and simply call the integration function
19 X = jd.jd_process(t_final, delta_t, a=a, b=b, xi=xi, lamb=lamb)

This will generate a jump diffusion process X of length int(10000/0.001) with the given parameters.

3.2.3 Using jumpdiff to retrieve the parameters

Moments and Kramers Moyal coefficients

Take the timeseries X and use the function moments to retrieve the conditional moments of the process. For now let
us focus on the shortest time lag, so we can best approximate the Kramers—Moyal coefficients. For this case we can
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simply employ

20 edges, moments = jd.moments(timeseries = X)

In the array edges are the limits of our space, and in our array moments are recorded all 6 powers/order of our
conditional moments. Let us take a look at these before we proceed, to get acquainted with them.

We can plot the first moment with any conventional plotter, so lets use here plotly from matplotlib. To visualise
the first moment, simply use

21 import matplotlib.pyplot as plt
22 plt.plot(edges, moments[1]/delta_t)

The first moment here (i.e., the first Kramers—Moyal coefficient) is given solely by the drift term that we have selected
-0.5*x. In the plot we have also included the theoretical curve, which we know from having selected the value of
a(x) in line 8.

Similarly, we can extract the second moment (i.e., the second Kramers—Moyal coefficient) is a mixture of both the
contributions of the diffusive term 𝑏(𝑥) and the jump terms 𝜉 and 𝜆.

You have this stored in moments[2].

3.2. Jump-diffusion processes 13



jumpdiff, Release 0.4.2

Retrieving the jump-related terms

Naturally one of the most pertinent questions when addressing jump-diffusion processes is the possibility of recovering
these same parameters from data. For the given jump-diffusion process we can use the jump_amplitude and
jump_rate functions to non-parametrically estimate the jump amplitude 𝜉 and 𝜆 terms.

After having the moments in hand, all we need is

23 # first estimate the jump amplitude
24 xi_est = jd.jump_amplitude(moments = moments)
25

26 # and now estimated the jump rate
27 lamb_est = jd.jump_rate(moments = moments)

which resulted in our case in (xi_est) 𝜉 = 2.43 ± 0.17 and (lamb_est) 𝜆 = 1.744 * delta_t
(don’t forget to divide lamb_est by delta_t)! We can compare these with our chose values in lines 15-16.

3.3 Distinguishing pure diffusions from jump-diffusions

One important question when we have some time series – possibly from real-world data – is to be able to discern if this
timeseries is a pure diffusion process (a continuous stochastic process) or a jump-diffusion process (a discontinuous
stochastic process). For this, jumpdiff has an easy to use function, called q_ratio. The idea behind distinguishing
continuous and discontinuous processes is simple: diffusion processes diffuse over time, thus they take time to occupy
space; jump-diffusion processes can jump, and thus statistically, they occupy all space very fast.

To analyse this let us design a simple example – with some numerically generated data – that shows the use of
q_ratio and how to read it.

Let us generate two trajectories, using jd_process, denoted d_timeseries and j_timeseries, for diffusion
timeseries and jumpy timeseries. Naturally the first must not include a jump term. To keep it simple, we will use the
same parameters for both, expect for the jumps:

1 import jumpdiff as jd
2

3 # integration time and time sampling
4 t_final = 10000
5 delta_t = 0.01
6

7 # Drift function
8 def a(x):
9 return -0.5*x

10

11 # Diffusion function
12 def b(x):
13 return 0.75
14

15 # generate 2 trajectories
16 d_timeseries = jd.jd_process(t_final, delta_t, a=a, b=b, xi=0, lamb=0)
17 j_timeseries = jd.jd_process(t_final, delta_t, a=a, b=b, xi=2.5, lamb=1.75)

Note how xi and lamb are different for each process To now examine the rate of diffusion of the processes, we need
to generate a time arrow, which we denote lag. This needs to be a integer list >0.

18 import numpy as np
19 lag = np.logspace(0, 3, 25, dtype=int)

14 Chapter 3. Table of Content
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Lastly we just need to can the q_ratio for our two timeseries

20 d_lag, d_Q = jd.q_ratio(lag, d_timeseries)
21 j_lag, j_Q = jd.q_ratio(lag, j_timeseries)

And with the help of matplotlib’s plotly, we can visualise the results in a double logarithmic scale

22 import matplotlib.plotly as plt
23

24 plt.loglog(d_lag, d_Q, '-', label='diffusion')
25 plt.loglog(j_lag, j_Q, 'o-', label='jump-diffusion')

As we can see, the diffusion process grows with our time arrow lag, where the jump-diffusion is constant (does
not depend on lag). Jump processes will show a constant relation with code:lag, where diffusion processes a linear
relation.

3.4 Functions

Documentation for all the functions in jumpdiff.

3.4.1 Jump-diffusion timeseries generator

jumpdiff.jd_process.jd_process(time: float, delta_t: float, a: callable, b: callable, xi: float, lamb:
float, init: float = None, solver: str = ’Euler’, b_prime: callable
= None)→ numpy.ndarray

Integrates a jump-diffusion process with drift a(x), diffusion b(x), jump amplitude xi (𝜉), and jump rate lamb
(𝜆).

d𝑋(𝑡) = 𝑎(𝑥, 𝑡) d𝑡+ 𝑏(𝑥, 𝑡) d𝑊 (𝑡) + 𝜉 d𝐽(𝑡),

with 𝐽 Poisson with jump rate 𝜆. This integrator has both an Euler Maruyama and a Milstein method of
integration. For Milstein one has to introduce the derivative of the diffusion term b, denoted b_prime.

Parameters

• time (float > 0) – Total integration time. Positive float or int.

• delta_t (float > 0) – Time sampling, the smaller the better.

3.4. Functions 15
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• a (callable) – The drift function. Can be a function of a lambda. For an
Ornstein Uhlenbeck process with drift -2x, a takes the form

a = lambda x: -2x.

• b (callable) – The diffusion function. Can be a function of a lambda. For an
Ornstein Uhlenbeck process with diffusion 1, a takes the form

b = lambda x: 1.

• xi (float > 0) – Variance of the jump amplitude, which will be turned into a normal
distribution like 𝒩(0,xi).

• lamb (float > 0) – Jump rate of the Poissonian jumps. This is implemented as the
numpy function np.random.poisson(lam = lamb * delta_t).

• init (float (defaul None)) – Initial conditions. If None given, generates a random value
from a normal distribution ~ 𝒩(0,delta_t).

• solver ('Euler' or 'Milstein' (defaul 'Euler')) – The regular
Euler Maruyama solver ‘Euler’ is the default, with an order of delta_t. To employ a
state-dependent diffusion, i.e., b(x) as a function of x, the Milstein scheme has an order of
delta_t. You must introduce as well the derivative of b(x), i.e., b’(x), as the argument
b_prime.

Returns X – Timeseries of size int(time/delta_t)

Return type np.array

3.4.2 Moments

jumpdiff.moments.moments(timeseries: numpy.ndarray, bw: float = None, bins: numpy.ndarray =
None, power: int = 6, lag: list = [1], correction: bool = True, norm: bool
= False, kernel: callable = None, tol: float = 1e-10, conv_method: str =
’auto’, verbose: bool = False)→ numpy.ndarray

Estimates the moments of the Kramers Moyal expansion from a timeseries using a Nadaraya Watson kernel
estimator method. These later can be turned into the drift and diffusion coefficients after normalisation.

Parameters

• timeseries (np.ndarray) – A 1-dimensional timeseries.

• bw (float) – Desired bandwidth of the kernel. A value of 1 occupies the full space of the
bin space. Recommended are values 0.005 < bw < 0.4.

• bins (np.ndarray (default None)) – The number of bins for each dimension, defaults to
np.array([5000]). This is the underlying space for the Kramers Moyal conditional
moments.

• power (int (default 6)) – Upper limit of the the Kramers Moyal conditional moments to
calculate. It will generate all Kramers Moyal conditional moments up to power.

• lag (list (default 1)) – Calculates the Kramers Moyal conditional moments at each indi-
cated lag, i.e., for timeseries[::lag[]]. Defaults to 1, the shortest timestep in the
data.

• corrections (bool (default True)) – Implements the second-order corrections of the
Kramers Moyal conditional moments directly

• norm (bool (default False)) – Sets the normalisation. False returns the Kramers Moyal
conditional moments, and True returns the Kramers Moyal coefficients.

16 Chapter 3. Table of Content



jumpdiff, Release 0.4.2

• kernel (callable (default None)) – Kernel used to convolute with the Kramers Moyal
conditional moments. To select example an Epanechnikov kernel use

kernel = kernels.epanechnikov

If None the Epanechnikov kernel will be used.

• tol (float (default 1e-10)) – Round to zero absolute values smaller than tol, after con-
volutions.

• conv_method (str (default auto)) – A string indicating which method to use to calculate
the convolution. docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.

• verbose (bool (default False)) – If True will report on the bandwidth used.

Returns

• edges (np.ndarray) – The bin edges with shape (D,bins.shape) of the calculated moments.

• moments (np.ndarray) – The calculated moments from the Kramers Moyal expansion of
the timeseries at each lag. To extract the selected orders of the moments, use moments[i,
:,j], with i the order according to powers, j the lag (if any given).

jumpdiff.moments.corrections(m: numpy.ndarray, power: int)
The moments function will by default apply the corrections. You can turn the corrections off in that fuction by
setting corrections = False.

Second-order corrections of the Kramers Moyal coefficients (conditional moments), given by

𝐹1 = 𝑀1,

𝐹2 =
1

2

(︀
𝑀2 −𝑀2

1

)︀
,

𝐹3 =
1

6

(︀
𝑀3 − 3𝑀1𝑀2 + 3𝑀3

1

)︀
,

𝐹4 =
1

24

(︀
𝑀4 − 4𝑀1𝑀3 + 18𝑀2

1𝑀2 − 3𝑀2
2 − 15𝑀4

1

)︀
,

𝐹5 =
1

120

(︀
𝑀5 − 5𝑀1𝑀4 + 30𝑀2

1𝑀3 − 150𝑀3
1𝑀2 + 45𝑀1𝑀

2
2 − 10𝑀2𝑀3 + 105𝑀5

1

)︀
𝐹6 =

1

720

(︀
𝑀6 − 6𝑀1𝑀5 + 45𝑀2

1𝑀4 − 300𝑀3
1𝑀3 + 1575𝑀4

1𝑀2 − 675𝑀2
1𝑀

2
2

+180𝑀1𝑀2𝑀3 + 45𝑀3
2 − 15𝑀2𝑀4 − 10𝑀2

3 − 945𝑀6
1

)︀
,

with the prefactor the normalisation, i.e., the normalised results are the Kramers Moyal coefficients. If norm is
False, this results in the Kramers Moyal conditional moments.

Parameters

• (moments) (m) – The calculated conditional moments from the Kramers Moyal expan-
sion of the at each lag. To extract the selected orders of the moments use moments[i,:,
j], with i the order according to powers, j the lag.

• power (int) – Upper limit of the Kramers Moyal conditional moments to calculate. It
will generate all Kramers Moyal conditional moments up to power.

Returns F – The corrections of the calculated Kramers Moyal conditional moments from the
Kramers Moyal expansion of the timeseries at each lag. To extract the selected orders of the
moments, use F[i,:,j], with i the order according to powers, j the lag (if any introduced).

Return type np.ndarray

3.4. Functions 17
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3.4.3 Parameters

jumpdiff.parameters.jump_amplitude(moments: numpy.ndarray, tol: float = 1e-10, full: bool =
False, verbose: bool = False)→ numpy.ndarray

Retrieves the jump amplitude xi (𝜉) via

𝜆(𝑥, 𝑡) =
𝑀4(𝑥, 𝑡)

3𝜎4
𝜉

.

Take notice that the different normalisation of the moments leads to a different results.

Parameters

• moments (np.ndarray) – Moments extracted with the function moments. Needs mo-
ments up to order 6.

• tol (float (defaul 1e-10)) – Toleration for the division of the moments.

• full (bool (defaul False)) – If True returns also the (biased) weighed standard deviation
of the averaging process.

• verbose (bool (defaul True)) – Prints the result.

Returns xi_est – Estimator of the jump amplitude xi (𝜉).

Return type np.ndarray

References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the stochastic behavior of complex time
series.’ Scientific Reports, 6, 35435, 2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt transitions in stochastic dynamics.’ New
Journal of Physics, 20(11):113043, 2018. doi: 10.1088/1367-2630/aaf0d7.

jumpdiff.parameters.jump_rate(moments: numpy.ndarray, xi_est: numpy.ndarray = None, tol:
float = 1e-10, full: bool = False, verbose: bool = False) →
numpy.ndarray

Retrieves the jump rate lamb (𝜆) via

𝜎2
𝜉 =

𝑀6(𝑥, 𝑡)

5𝑀4(𝑥, 𝑡)
.

Take notice that the different normalisation of the moments leads to a different results.

Parameters

• moments (np.ndarray) – moments extracted with the function ‘moments’. Needs mo-
ments of order 6.

• tol (float (defaul 1e-10)) – Toleration for the division of the moments.

• full (bool (defaul False)) – If True returns also the (biased) weighed standard deviation
of the averaging process.

• verbose (bool (defaul True)) – Prints the result.

Returns xi_est – Estimator on the jump rate lamb (𝜆)

Return type np.ndarray
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References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the stochastic behavior of complex time
series.’ Scientific Reports, 6, 35435, 2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt transitions in stochastic dynamics.’ New
Journal of Physics, 20(11):113043, 2018. doi: 10.1088/1367-2630/aaf0d7.

3.4.4 Q-ratio

jumpdiff.q_ratio.q_ratio(lag: numpy.ndarray, timeseries: numpy.ndarray, loc: int = None, correc-
tion: bool = False)→ numpy.ndarray

q_ratio method to distinguish pure diffusion from jump-diffusion timeseries, Given by the relation of the 4th
and 6th Kramers Moyal coefficient with increasing lag

𝑄(𝑥, 𝜏) =
𝐷6(𝑥, 𝜏)

5𝐷4(𝑥, 𝜏)
=

{︂
𝑏(𝑥)2𝜏, diffusive
𝜎2
𝜉 (𝑥), jumpy

Parameters

• lag (np.ndarray of ints) – An array with the time-lag to extract the
Kramers–Moyal coefficient for different lags.

• timeseries (np.ndarray) – A 1-dimensional timeseries.

• loc (float (defaul None)) – Use a particular point in space to calculate the ratio. If None
given, the maximum of the probability density function is taken.

• corrections (bool (defaul False)) – Select whether to use corrective terms.

Returns

• lag (np.ndarray of ints) – Same as input, but only lag > 0 and as ints.

• ratio (np.ndarray of len(lag)) – Ratio of the sixth-order over forth-order Kramers–Moyal
coefficient.

References

Anvari, M., Tabar, M. R. R., Peinke, J., Lehnertz, K., ‘Disentangling the stochastic behavior of complex time
series.’ Scientific Reports, 6, 35435, 2016. doi: 10.1038/srep35435.

Lehnertz, K., Zabawa, L., and Tabar, M. R. R., ‘Characterizing abrupt transitions in stochastic dynamics.’ New
Journal of Physics, 20(11):113043, 2018. doi: 10.1088/1367-2630/aaf0d7.

3.4.5 Formulae

jumpdiff.formulae.m_formula(power, tau=True)
Generate the formula for the conditional moments with second-order corrections based on the relation with the
ordinary Bell polynomials

𝑀𝑛(𝑥
′, 𝜏) ∼ (𝑛!)𝜏𝐷𝑛(𝑥

′) +
(𝑛!)𝜏2

2

𝑛−1∑︁
𝑚=1

𝐷𝑚(𝑥′)𝐷𝑛−𝑚(𝑥′)

Parameters power (int) – Desired order of the formula.

Returns term – Expression up to given power.
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Return type sympy.symbols

jumpdiff.formulae.f_formula(power)
Generate the formula for the conditional moments with second-order corrections based on the relation with the
ordinary Bell polynomials

𝐷𝑛(𝑥) =
1

𝜏(𝑛!)

[︂
�̂�𝑛,1 (𝑀1(𝑥, 𝜏),𝑀2(𝑥, 𝜏), . . . ,𝑀𝑛(𝑥, 𝜏))

−𝜏

2
�̂�𝑛,2 (𝑀1(𝑥, 𝜏),𝑀2(𝑥, 𝜏), . . . ,𝑀𝑛−1(𝑥, 𝜏))

]︁
.

Parameters power (int) – Desired order of the formula.

Returns term – Expression up to given power.

Return type sympy.symbols

jumpdiff.formulae.f_formula_solver(power)
Generate the reciprocal relation of the moments to the Kramers Moyal coefficients by sequential iteration.

𝐷𝑛(𝑥) =
1

𝜏(𝑛!)

[︂
�̂�𝑛,1 (𝑀1(𝑥, 𝜏),𝑀2(𝑥, 𝜏), . . . ,𝑀𝑛(𝑥, 𝜏))

−𝜏

2
�̂�𝑛,2 (𝑀1(𝑥, 𝜏),𝑀2(𝑥, 𝜏), . . . ,𝑀𝑛−1(𝑥, 𝜏))

]︁
.

Parameters power (int) – Desired order of the formula.

Returns term – Expression up to given power.

Return type sympy.symbols

3.4.6 Helping functions

Kernels function

jumpdiff.kernels.kernel(kernel_func)
Transforms a kernel function into a scaled kernel function (for a certain bandwidth bw).

Currently implemented kernels are: Epanechnikov, Gaussian, Uniform, Triangular, Quartic.

For a good overview of various kernels see https://en.wikipedia.org/wiki/Kernel_(statistics)

jumpdiff.kernels.volume_unit_ball(dims: int)→ float
Returns the volume of a unit ball in dimensions dims.

jumpdiff.kernels.epanechnikov(x: numpy.ndarray, dims: int)→ numpy.ndarray
The Epanechnikov kernel in dimensions dims.

jumpdiff.kernels.gaussian(x: numpy.ndarray, dims: int)→ numpy.ndarray
Gaussian kernel in dimensions dims.

jumpdiff.kernels.uniform(x: numpy.ndarray, dims: int)→ numpy.ndarray
Uniform, or rectangular kernel in dimensions dims

jumpdiff.kernels.triagular(x: numpy.ndarray, dims: int)→ numpy.ndarray
Triagular kernel in dimensions dims

jumpdiff.kernels.quartic(x: numpy.ndarray, dims: int)→ numpy.ndarray
Quartic, or biweight kernel in dimensions dims
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3.5 License

MIT License

Copyright (c) 2019-2021 Leonardo Rydin Gorjão

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.6 Contact

If you need help with something, find a bug, issue, or typo on the repository or in the code, you can contact me here:
leonardo.rydin@gmail.com or open an issue on the GitHub repository.
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